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Abstract

Remotely sensed imagery provides contiguous spatial coverage of a field and can be used as a surrogate to measure crop and soil
attributes. Empirical regression models are often used to convert imagery to attribute maps, when an a priori linear relationship can
be assumed to exist between the imagery and ground attributes. In this study, we used the response surface approach incorporated in
the ECe Sampling, Assessment, and Prediction (ESAP) software to create ground sampling designs from input imagery in order to
develop regression equations for predicting crop height and width attributes in a 3.4-ha cotton field. We examined both the reliability
of this model-based sampling approach as well as the validity of the assumed linear models using multiple-date imagery and sample
data collected from a 3-year remote sensing experiment. Predictions of height and width from regressions between the imagery and
ground sampling at the calibration locations gave coefficients of determination for height ranging from 0.34 to 0.90 and for width,
0.30 to 0.94. All regression models but one were statistically significant at the α = 0.01 level. To test the reliability of the sampling
approach, the regression models developed during the first year were used to predict additional crop height and width attributes at a
randomly chosen set of validation sites. Multiple statistical tests indicated that these predictions were both unbiased and within the
specified precision of the estimated regression equations. This regression-based directed sampling and estimation method requires
fewer points than co-kriging to develop reliable imagery-crop attribute relationships, and thus is potentially less expensive. We
hypothesize that other variables such as crop nitrogen might also be accurately predicted using this approach as long as the crop
attribute and spectral index meet the model assumptions. Maps of crop attributes and/or soil properties could be used by farmer
consultants to schedule variable-rate applications of chemicals or as inputs to crop simulation models providing a spatial extension
to their time-series nature.
Published by Elsevier B.V.
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1. Introduction

One limitation to the application of remotely sensed imagery in site-specific agriculture is the lack of cost-effective
sampling procedures to convert imagery to maps of the primary crop or soil attribute of interest. Depending on
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the number of samples collected, ground sampling based on grids or management zones can be expensive and the
placement of sampling locations within management zones can be ambiguous. Also, if not properly accounted for,
spatial autocorrelation can lead to errors when developing relationships between imagery and ground data (Atkinson,
2002). Additionally, the scale of soil and plant sampling must correspond to imagery pixel size (Atkinson and Curran,
1995, 1997) and the remotely sensed index must be strongly correlated to the ground parameter of interest. Thus, to
be statistically robust and cost-effective, an ideal sampling strategy using remotely sensed imagery should (i) account
for factors of scale of variability, (ii) have available a spatially contiguous (covariate) data set of the field, (iii) reduce
spatial autocorrelation as much as possible, and (iv) provide unambiguous geo-positioned sampling locations.

Directed (or “model-based”) sampling uses the information contained in a covariate spatial data set (i.e., an image
or fine grid of survey data) to select specified locations in a field for sampling (specific crop or soil attributes), based
on the variability present in the covariate data set and the assumed form of the regression function (Lesch, 2005). The
covariate data set can be two-dimensional (maps) of yield, topography, electromagnetic induction, soil texture, salinity
or be image-derived, as discussed here. Directed sampling is advantageous when the general form of the regression
function can be specified a priori, but a limited number of soil or crop samples must still be acquired to calibrate (i.e.,
estimate) the model parameters. In such situations, directed sampling techniques can typically be used to reduce the
number of sampling locations needed for efficient parameter estimation.

The ECe Sampling, Assessment, and Prediction-response surface sampling design (ESAP-RSSD) software program
was used to direct all ground sampling performed in this study. This software generates spatially referenced sampling
designs by selecting a minimum set of calibration samples based on the observed magnitudes and spatial locations of
the data, with the explicit goal of optimizing the estimation of a multiple linear regression model (Lesch et al., 1995a,
b, 2000; Lesch, 2005). The sampling algorithm also attempts to select calibration sampling locations that maximize
the probability of generating spatially uncorrelated regression model residuals, thus allowing the analyst to use an
ordinary regression model in place of a more complicated spatial linear model or geostatistical model (Schabenberger
and Gotway, 2005). The software has been used extensively in salinity assessment and precision farming applications
and was originally developed to facilitate the estimation of soil salinity (ECe) from soil conductivity (ECa) survey data
(Rhoades et al., 1999; Corwin and Plant, 2005; Lesch et al., 2005). However, in principle, the underlying sampling
methodology is broad enough to allow input of other types of geo-referenced survey data, such as imagery.

The objective of this research was to evaluate the ability of the ESAP-RSSD software to direct ground sampling
by substituting aerial imagery for ECa and crop height and width for ECe, producing predictive maps of these crop
attributes. The first year, both calibration and validation data were collected and subjected to various statistical analyses
to test the effectiveness and reliability of the directed sampling approach. In all three years, the software was used to
create directed sampling plans for estimating the regression equations that converted the aerial images into field maps
of crop width and height.

2. Materials and methods

2.1. Description of field and location

The experimental site was a 3.4-ha field planted to cotton (Gossypium hirsutum L., cv. Delta Pine 448B) on 28
April 2001 and 15 April in 2002 and 2003 at the University of Arizona, Maricopa Agricultural Center (MAC) located
approximately 40 km south of Phoenix (33◦04′21′′N; 111◦58′45′′W) at an elevation of 360 m above sea level (Fig. 1).
The field straddles the transition between two soil series (Post et al., 1988): Mohall sandy loam (fine-loamy, mixed,
hyperthermic Typic Haplargid) is dominant in the northeast portion of the field, and Casa Grande sandy clay loam
(fine-loamy, mixed, hyperthermic Typic Natrargids) spans most of the southwest region. This is an arid area, receiving
185 mm of rainfall per year with maximum daily summer temperatures ranging from 25 to 46 ◦C. The field had an
on-going tillage study imposed with two-row “skips” where no cotton was grown. The field was graded level and
furrow irrigated from the east.

2.2. Remote sensing

In 2001, aerial imagery was acquired on three dates using an off-the-shelf Nikon Coolpix 950 (Nikon Inc., Torrance,
CA) true-color three megapixel digital camera (Table 1). Flight elevations were 920 m (3000 ft) above ground level.
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Fig. 1. Mid-season panchromatic image of cotton field used for directed sampling acquired with an off-the-shelf digital camera. Soil and roads
appear bright, while dense cotton canopy appears dark. Four, 8 m by 8 m reference tarps used to convert 2002 and 2003 imagery to reflectance for
NDVI calculations are visible along the eastern edge of the field. The bright east to west lines are 2-m wide “skip” rows where cotton was not
planted allowing tractor access to the fields. The five east–west broad areas or “benches” were 40-row wide areas planted to cotton. A brighter soil
with greater sand content is visible in the NE portion of the field (leading to poorer cotton stands and more visible soil).

The dates were chosen so that between 30 and 90% cover was established in the crop, which is a period during crop
development when spectral measurements have more robust relations for estimating ground parameters. Very early in
the season the proportion of bare soil is high, which masks the plant spectral signal (Huete, 1988; Jackson and Huete,
1991). Late in the season, after full cover, relationships change due to canopy closure (Carlson and Ripley, 1997) and
senescence. Flights occurred between 1030 and 1100 h local time. The Nikon red band images were used to select

Table 1
Flight day of year (DOY), dates, field conditions, and image type

DOY (2001) Date Nominal field conditions Image type

118 28 Apr 2001 Dry soil, planted Delta Pine 448B –
198 17 Jul 2001 Dry soil, ∼75% cover Red uncala

207 26 Jul 2001 Dry soil, ∼80% cover Red uncal
226 14 Aug 2001 Dry soil, ∼95% cover Red uncal

DOY (2002)

105 16 Apr 2002 Dry soil, planted Delta Pine 448B –
176 25 Jun 2002 Dry soil, ∼45% cover NDVI calb

192 11 Jul 2002 Dry soil, ∼75% cover NDVI cal
207 26 Jul 2002 Irrigated 3 days before, ∼85% cover NDVI cal

DOY (2003)

104 15 Apr 2003 Dry soil, planted Delta Pine 448B –
168 17 Jun 2003 Dry soil, ∼30% cover NDVI calb

176 25 Jun 2003 Irrigated 5 days before, ∼45% cover NDVI cal
217 5 Aug 2003 Irrigated 4 days before, ∼85% cover NDVI cal
237 25 Aug 2003 Dry soil, ∼90% cover NDVI cal

a Off-the-shelf wide-band digital camera, red band, uncalibrated.
b 3-CCD narrow-band camera, calibrated to reflectance using ground reference tarps.
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the sampling locations. The red band was centered at 625 nm with a 100-nm bandwidth (full width half maximum).
Field of view and pixel resolution varied depending on zoom setting but pixel resolutions were always less than
0.5 m.

Imagery was acquired on three dates in 2002 and four in 2003 using a Duncan MS3100 (Redlake Inc., San Diego,
CA) camera that acquired three coincident, 8-bit images in three wavebands (Table 1). The wavebands were centered
on 670, 720, and 790 nm with 10-nm bandwidths (full width half maximum). Flight elevation in both years was 1070 m
(3500 ft) above ground level. The Duncan camera had a 15◦ × 20◦ field of view resulting in a pixel resolution of about
0.4 m. Imagery on the dates reported here was acquired about 60–90 min after solar noon, between 1315 and 1400
local time.

Reference tarps (Group VIII Technologies, Provo, UT) with known nominal reflectance values of 4, 8, 48, and
64% were placed either adjacent to the field or in a neighboring field during each flight in 2002 and 2003, and
images were acquired within 7 min of acquiring images of the tarps. Coincident, ground-based PS-IITM (Analytical
Spectral Devices, Boulder, CO) radiometer measurements were made over the tarps near flight times to radiometrically
calibrate the imagery to reflectance. The PS-II measures energy from 400 to 1100 nm. These procedures and calibration
tarps are similar to those described by Moran et al. (2001). Geometric registration for all 3 years was accomplished by
measuring coordinates of markers placed in the images with a Trimble Ag132 (Trimble Navigation Limited, Sunnyvale,
CA) receiver with real-time differential correction. Repeated measures of the markers were made during the season to
insure the locations were known to sub-meter accuracy.

2.3. Ground sampling

In 2001, there were 25 sampling sites: 12 calibration and 13 validation. The validation sites were ‘fixed’ in location
for all dates while the calibration site locations varied due to the changing imagery information acquired from each flight.
Imagery collected during the 1994 MADMAC experiments (Moran et al., 1996) was used to determine the initial ‘fixed’
validation sampling locations using normalized difference vegetation index (NDVI) values of the field on 14 June. On
that date, the field contained a cotton crop that provided approximately 30% ground cover. The validation locations
were chosen using a stratified-random sampling scheme, with the NDVI representing the stratification variable. Plant
height and canopy width measurements were collected weekly at the validation locations and after each flight at the
calibration locations, usually within 24 h. For 2001 and 2002, plant height and width were measured for five plants
at each sampling site on each sample date at 0.5-m intervals. Canopy width was measured using a meter stick placed
perpendicular to the row at each plant location. Rows were spaced 1.02 m (40 in.) apart. Width was a surrogate for
percent cover. Plant samples were selected to represent the area around the sample location. In 2003, plant width was
measured at three locations in a row and height of 10 plants was averaged.

2.4. Directed sampling and image processing

All image processing, including geo-registration, masking, classification, etc., was performed using ENVI software
(Research Systems Inc., Boulder, CO). Raw imagery (digital numbers) was radiometrically calibrated to reflectance
in 2002 and 2003 and converted to NDVI using the 670 and 790 nm wavebands from the Duncan camera. The NDVI
was calculated as: (790 − 670)/(790 + 670). Imagery from all dates was then geo-referenced with known ground points
visible in the imagery. Since the intent was to provide locations to sample plants, the “skips” were masked out of the
imagery using standard procedures in the ENVI software before entering data into the ESAP-RSSD software to avoid
selecting non-plant sample sites in these areas (Fig. 2). In 2001 and 2002, image data were re-sampled to 2-m pixels
so that the number of data points (pixels) was less than the software-imposed limit of 30,000 points and then input to
ESAP-RSSD as text files containing coordinates and pixel data. In 2003, pixels were re-sampled to 1 m and the narrow
strips of cotton were masked out of the imagery (Fig. 2g–i).

The ESAP-RSSD software produces sample designs that space the sample locations apart to minimize the possibility
of spatial autocorrelation in the regression model residuals. Each sampling design is assigned an “optimization criterion”
(OptCri), which is a measure of the uniformity of coverage of the selected sampling locations, normalized for the field
size (Lesch et al., 2000). More specifically, for a sample of size n, the program calculates the approximate maximum
possible separation distance (SDp) that a uniformly spaced sampling pattern might achieve (assuming the field is
rectangular). It then calculates the achieved average separation distance for the current design (SDa) and computes



102 G.J. Fitzgerald et al. / Computers and Electronics in Agriculture 53 (2006) 98–112

Fig. 2. Directed sampling locations for all 3 years and sampling dates. In 2001 (a–c) and 2002 (d–f) only the northern portion of the field was
sampled, while in 2003 (g–j), only the wider “benches” were used for sampling and analysis (compare to Fig. 1). Validation sites were located in
2001 only. In 2001, the red band from an off-the-shelf digital camera was used to direct sampling. Higher values indicate sparser vegetation. In 2002
and 2003, NDVI was calculated and higher values indicate denser vegetation. Areas of skip rows where no cotton was planted were masked, as were
field edges. In 2003, small squares in the middle of the benches were masked to exclude markers placed in the fields to facilitate image geo-registration.
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the OptCri score as SDp/SDa. The operator can then choose a design based on the assigned OptCri. Typically, as was
done here, the sample design with the lowest OptCri (best separation of points) is chosen. The default setting in the
ESAP-RSSD program selects 12 geo-registered calibration locations for sampling, thus directing the user to these
locations for ground sampling. Details of the selection procedure and use of the software can be found in Lesch et
al. (2000). Outliers were removed from the input pixel values that were four or more standard deviations from the
mean.

Sampling sites were located on the ground by entering as input the 12 calibration coordinates into a differential
global positioning system and walking to them. After testing for statistical significance between the pixel values and
ground data and residual spatial correlation (see Section 2.5), predictions of crop height and width were accomplished
by fitting regression models between the image pixel values (red band or NDVI) and ground data at the sampling
locations for each date. To test the validity of the sampling approach, the 13 fixed validation locations were used
as independent data sets in 2001 to validate the crop attribute values predicted from the calibration sites. In 2002
and 2003, imagery was calibrated to predict height and width across the field without validation. Mean pixel values
were extracted from the imagery in 3-pixel diameter areas around the sampling locations to develop the calibration
regressions.

2.5. Statistical analyses

Six sequential steps were used during the modeling and validation of the 2001 data: (1) remove outliers in the
regressions between imagery and ground data for each date, (2) check that the residual errors were normally distributed
using distribution tests and residual plots for normality, (3) determine statistical significance of correlation models for
the pooled data (calibration and validation sites), (4) produce regression statistics for pooled data, (5) perform a test
for residual spatial independence (Moran test statistic, IMS), and (6) perform F-tests to test the ability of the regression
models to predict the ground values at the validation sites from the calibration data alone.

Of the 318 data points used in the analysis (10 dates × 12 calibration sites + 13 validation sites × 3 dates for each
of two parameters), only two were considered outliers since the externally standardized residuals were four or more
standard deviations from zero. After removing these outliers and testing for normality, coefficients of determination
were calculated for pixel values (red or NDVI) versus crop attributes. Regression statistics were then calculated (Table 2)
for those models that were statistically significant at the α = 0.01 level. This included the Moran test statistic (IMS) for
spatial independence of residuals (Upton and Fingleton, 1985; Haining, 1990) and three separate F-tests for model
validity, as described below.

In all of the analyses, a simple linear model was assumed to explain each crop attribute/pixel level relationship; i.e.,

yi = β0 + β1xi + εi (1)

where y represents the crop attribute, x represents the corresponding pixel level, (β0, β1) represent the unknown intercept
and slope parameters, and ε represents the (normal) random error component. Note that this model can be conveniently
expressed in matrix notation as

y = Xβ + ε (2)

where all components are defined as before. After estimating Eq. (2) using the pooled data, the Moran test was calculated
as

IM = (e′We)

e′e
where e = y − Xβ̂ (3)

and W was defined to be a normalized inverse-distance squared weighting matrix. The corresponding normalized IM
test statistic (IMS) was then defined as

IMS = (IM − E{IM})
Std(IM)

(4)

where the expectation and variance of the test statistic were computed using the formulas given in Upton and Fingleton
(1985).
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Table 2
Regression statistics

Attribute DOY Date Mean Slope (S.E.) Y-intercept r2 RMSE IMS

Height
198 17 Jul 2001 0.76 (0.026) −0.0053 (0.0004)a 1.22 (0.39) 0.88 0.044 0.78
207 26 Jul 2001 0.82 (0.020) −0.0024 (0.0007) 1.07 (0.73) 0.34 0.084 0.31
226 14 Aug 2001 0.89 (0.026) −0.0080 (0.0016)a 1.38 (0.99) 0.55 0.077 0.90

Width
198 17 Jul 2001 0.75 (0.022) −0.0044 (0.0006) 1.15 (0.57) 0.68 0.064 0.90
207 26 Jul 2001 0.81 (0.017) −0.0019 (0.0006) 1.00 (0.63) 0.30 0.072 0.09
226 14 Aug 2001 0.97 (0.019) n/a (truncated data) – – – –

Height
176 25 Jun 2002 0.46 (0.026) 0.62 (0.15)b 0.26 (0.51) 0.67 0.053 −0.74
192 11 Jul 2002 0.70 (0.024) 0.34 (0.12)c 0.48 (0.80) 0.45 0.066 −0.01
207 26 Jul 2002 0.84 (0.050) 1.0 (0.257) 0.01 (2.20) 0.60 0.012 0.07

Width
176 25 Jun 2002 0.47 (0.022) 0.49 (0.14)b 0.31 (0.50) 0.58 0.050 −0.71
192 11 Jul 2002 0.74 (0.022) – – 0.01 ns – 1.82d

207 26 Jul 2002 0.87 (0.030) 0.56 (0.17) 0.40 (1.50) 0.51 0.077 0.17

Height

168 17 Jun 2003 0.31 (0.019) 0.79 (0.083) 0.19 (0.014) 0.90 0.022 1.94e

176 25 Jun 2003 0.41 (0.028) 0.66 (0.114) 0.26 (0.028) 0.77 0.030 0.33
217 5 Aug 2003 0.84 (0.035) 1.16 (0.102) 0.12 (0.064) 0.93 0.034 −1.02
237 25 Aug 2003 0.89 (0.034) 1.22 (0.178) 0.12 (0.113) 0.83 0.052 0.37

Width

168 17 Jun 2003 0.32 (0.014) 0.48 (0.113) 0.24 (0.019) 0.65 0.030 0.74
176 25 Jun 2003 0.47 (0.017) 0.61 (0.126) 0.33 (0.030) 0.70 0.033 0.15
217 5 Aug 2003 0.86 (0.046) 1.53 (0.147) −0.086 (0.092) 0.92 0.049 0.40
237 25 Aug 2003 0.93 (0.048) 1.81 (0.146) −0.21 (0.093) 0.94 0.043 1.13

Calibration and validation points pooled in 2001 (n = 25). All regression models are significant at α = 0.01 level of significance and all 2002 and
2003 models are based on 12 calibration points except as noted. Numbers in parentheses represent standard errors (S.E.). The statistic IMS is the
Moran test for spatial independence (as defined in Eq. (4)). In 2001, off-the-shelf digital camera red wavebands were used in analysis. The NDVI
calibrated to reflectance was used in 2002 and 2003. Height, width, and RMSE values for these attributes are in units of meters.

a One outlier deleted (see text).
b Calibration data n = 11.
c Significant at α = 0.05 level.
d p = 0.034.
e p = 0.026.

The three F-tests used to assess model validity were defined as follows. First, note that the pooled y and X data can
be partitioned as

y =
[

y1

y2

]
and X =

[
X1

X2

]
(5)

where the subscripts represent the calibration and validation data and regression matrices, respectively. Given this
partition, the composite model F-test was performed by fitting:

y = X1β1 + X2β2 + ε (6)

and then testing if β1 = β2 (Cook and Weisberg, 1999). The joint prediction F-test was performed by first estimating
Eq. (2) using just the calibration data, next calculating the joint set of prediction errors across the validation sites as

e2 = y2 − β̂1X2 (7)

and then by computing the statistic:

F1 = e2
′�−1 e2

s2
1

where � = (I + X2(X1
′X1)−1X2

′) (8)

Note that F1 follows a central F(q, m) distribution under the null hypothesis (i.e., that the fitted calibration model is
correct) where q and m represent the number of new (validation) prediction sites and the (calibration) model degrees
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of freedom, respectively, and s2
1 represents the estimated calibration model mean square error (Rao and Toutenburg,

1999). Finally, the mean prediction t-test was performed by first calculating the average prediction error as

ē = a′e2 where a′ =
[

1

q
. . .

1

q

]
(9)

and then computing the statistic:

t1 = ē

(s1
√

h)
where h =

[(
1

q

)
+ (a′X2(X1

′X1)−1X2
′a)

]
(10)

Note that t1 follows a central t distribution (with m degrees of freedom) under the null hypothesis, where s1 is defined
as before in Eq. (8) (Rao and Toutenburg, 1999).

Intuitively, the composite model F-test represents a test for non-equivalent intercepts and slopes across the partitioned
calibration and prediction (validation) sites. In contrast, the joint prediction F-test assesses the ability of the regression
model (fit using the calibration data only) to make unbiased predictions at all new validation sites, and simultaneously
tests if these prediction errors are within the specified tolerance (precision) of the model. The mean prediction t-test
follows from the joint prediction F-test, and hence assesses the ability of the regression model to make an unbiased
prediction of the average value across the q validation sites.

We interpreted an IMS test statistic greater than 1.65 to indicate statistically significant spatial correlation in the
residual errors (based on a one-sided value for which a standardized normal z-score is 0.05). Likewise, we interpreted
an F-test and/or t-test with a p-value <0.05 to indicate a violation of model validity (which we assume is due to sampling
design induced bias, rather than model miss-specification). Note that the F- and t-test assume that the residual errors
are normally distributed and jointly spatially independent. These assumptions were assessed using distribution tests
and normal probability plots of the residuals (Cook and Weisberg, 1999), along with the results of the Moran test (for
spatial correlation). The Moran score was calculated using the ESAP-calibrate software program (Lesch et al., 2000).

The ESAP-RSSD software attempts to maximize the probability of generating a sampling design that will yield
spatially uncorrelated regression model residuals, but does not remove residual spatial correlation per se. It selects sites
with lower probability of significant correlations by spreading out the sample locations within the confines of the field
of interest. However, if the true residual spatial correlation structure is greater than the average between sample and site
distance, then the observed residuals will tend to still exhibit spatial dependence. In general, the Moran test (or some
similar test statistic) should always be used to validate the residual spatial independence assumption. Regression models,
which exhibit a significant (residual) spatial correlation structure, are in theory sub-optimal; the model mean square
error estimate and/or site-specific prediction intervals will typically be biased (i.e., under-estimated). Additionally, the
corresponding parameter test statistics will tend to be anti-conservative (Cressie, 1991; Rao and Toutenburg, 1999),
that is, the associated p-values will tend to be too small.

In 2002 and 2003, the validation step was not performed. Thus, only the first five steps used for the 2001 data were
implemented: (1) remove outliers, (2) check residual error normality, (3) determine significance of correlation models
for calibration sites, (4) produce regression statistics, and (5) calculate the Moran score. The root mean square error
(RMSE) is an estimate of the standard deviation of the regression model (Neter et al., 1990). It was used here as a
measure of the accuracy of the regression models in providing useful plant attribute values across the field.

3. Results

Crop width data for DOY 226 in 2001 equal to or greater than 100 cm were recorded as 100 cm causing truncated
data, which violates the assumptions of regression modeling and, therefore, could not be modeled (Table 2). When the
two outlier points for height (DOY 198 and 226) were removed, these regressions became significant at the α = 0.01
level. All of the Moran (IMS) test statistics associated with the 2001 regression models were non-significant and
the residual errors appeared to be normally distributed. Thus, all regression models in 2001 satisfied the modeling
assumptions required to perform the composite model and prediction tests necessary for validation of the sampling
design.

If the regression models developed using the directed sampling approach are unbiased, then these equations should
be able to predict the crop height and width measurements at all non-sampled locations in an unbiased manner.
Additionally, the precision of these predictions should be within the specified precision of the fitted models. Thus, the
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Table 3
Composite model and joint prediction F-tests and mean prediction t-test results for 2001 imagery vs. crop data

DOY (2001) Canopy variable Composite model F-score Joint prediction F-score Mean prediction t-score

198 Heighta 3.03 (0.071) 0.92 (0.566) −2.20 (0.053)
207 Height 1.25 (0.308) 0.49 (0.884) −1.11 (0.293)
226 Heighta 0.43 (0.657) 1.66 (0.226) −0.06 (0.951)
198 Width 3.41 (0.052) 1.70 (0.204) −2.49 (0.032)
207 Width 0.88 (0.429) 0.57 (0.828) −0.41 (0.692)
226 Widthb – – –

Levels of significance (p) values are in parentheses. Test results that were significant below the α = 0.05 level are shown in italics.
a One outlier deleted and removed (see text).
b Data truncated, violating assumptions of regression modeling.

composite and joint prediction F-tests and mean prediction t-tests performed in 2001 should all yield non-significant
test scores (Table 3). Only the mean prediction t-score test for DOY 198 width appeared significant below the 0.05 level
(p = 0.032). Furthermore, none of the 15 tests were significant at the 0.01 level. In Fig. 3, the validation site data are
overlaid but are not included in the regression model. The inclusion of the validation points within the 95% confidence
envelope for the calibration data offers further evidence that these two data sets described the same relationship. These
test results indicate that the directed sampling approach was successful at choosing calibration sampling locations
that could in turn be used for estimating unbiased prediction equations (i.e., regression models) for 2001. It should be
clearly noted that these tests assess the ability of the ESAP response surface technique to produce a valid model and

Fig. 3. Regressions of 2001 calibration vs. validation data (imagery pixel values) for crop height and width. Validation site data are overlaid but
are not part of the regression. Crop data collected at the calibration and validation sites fall within the same data ranges, representing the same
relationships. Dotted lines are 95% confidence intervals.
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not to test the ability of the resulting regressions to predict the ground values and create useful maps of the variables
of interest (height and width) as measured by r2 or RMSE. This was done as a separate step for all 3 years.

The NDVI was not calculated in 2001 because mechanical defects prevented the use of a camera that would have
provided near-infrared imagery. It is well established that spectral data in the red part of the spectrum and the NDVI
are good estimates of plant features related to chlorophyll absorption, cover, height, etc. (Gausman, 1982; Jackson and
Huete, 1991) during mid to late season (i.e., cover > 30%). Despite the different spectral measures of ground conditions
(red band in 2001), the directed sampling approach will still be valid for the 2002 and 2003 NDVI data provided the
response function describing the imagery/ground attribute relationships is the same (i.e., in this case, linear). The use
of this response surface approach should be valid for any similar linear relationship. However, the ability of the model
to predict ground attributes will depend on the variability of the data as represented by the RMSE. It is possible for
this directed sampling (or any modeling) approach to be statistically valid but the predictive equations not very useful
due to large amounts of scatter in the data.

Since the basic linear model was validated in 2001, validation data were not collected in 2002 and 2003. Co-located
ground and imagery data in 2002 and 2003 and calibration locations in 2001 were used to develop regression models
to convert (calibrate) imagery pixel values to estimates of the crop attributes (Table 2). All regression models but one
were statistically significant at α = 0.05 (Table 2) and most were significant at α = 0.01. It is unknown why the DOY
192, 2002 date was not significant. Overall, the RMSE were acceptable, showing that this sampling method can predict
height and width to within about 0.08 m with only 12 sampled locations.

Once regression statistics are calculated for the pixel values versus crop attribute (Table 2), predictive models can
be generated and applied to the covariate data to produce maps of the crop attribute of interest (Fig. 4a and c). The
ESAP-RSSD module outputs a ‘survey’ file that, along with a file containing the calibration data (width and height)
at the sampled locations, can be input to the ESAP-calibrate module to produce the regression models, the Moran
test statistic, and the prediction (and corresponding prediction variance) output files. Details of proper formatting and

Fig. 4. Examples of predicted width (a) and standard deviation (b) maps for 2002, DOY 176 as output from the ESAP-calibrate module. The panels
in (c) and (d) show the respective maps classified into quartiles with the 2nd and 3rd quartiles combined to simplify display. Each quartile range
includes the mean standard deviation in parentheses.
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processing steps can be found in Lesch et al. (2000). These model estimation and statistical prediction techniques can
equivalently be carried out using most standard statistical software packages, if desired. An example of the predicted
cotton crop width in 2002 and corresponding prediction standard deviation are shown in Fig. 4a and b. The corresponding
classification maps (panels c and d) show the quartile ranges of the values and where they occur.

4. Discussion

Radiometrically calibrated or uncalibrated wide or narrow band imagery can be used for directed sampling as long
as there is a linear (or low-order quadratic) relationship between the crop attributes of interest and the spectral bands.
When these equations are used to predict crop attributes at other locations in the field, they should not be extrapolated
outside the range of values selected by the ESAP-RSSD software early in the season since NDVI ∼ 0.1 represented bare
soil and a linear extrapolation to the y-axis would show positive values. The fitted line in Fig. 5 shows the regression
for the pooled DOY 176–207, 2002 data extrapolated showing the presumed response to NDVI = 0.1. A scaled NDVI
that sets the bare soil value to zero could also be used.

It should be noted that there were occasions when the 3-pixel sampling buffer around a given pixel had to be shifted
by one pixel if a sample location fell near a skip row (and therefore the edge of a mask). It is possible that coordinate
data were in error, since differential GPS data can contain errors of a few meters, although this was minimized due to
meticulous geo-registration. The most likely reason for data scatter and therefore poorer correlations was that the small
ground sampling areas may not have represented the 3 by 3 pixel areas well. It is important that the areas represented by
ground sampling and pixel averaging are similar to reduce the chances of scale differences and data scatter (Atkinson
and Curran, 1995).

It was noticed that the ESAP-RSSD software tended to be “attracted” to some points with more extreme values,
such as bare soil (skips and missing plants) as well as field edges. Johnson et al. (2005) also reported this tendency of
ESAP-RSSD to choose extreme ECa values. By design, ESAP selects levels in the covariate data spanning the range
of input values (Fig. 6), thus it will necessarily select some values near the extremes of the data set. The software
also separates the locations apart as much as possible so points have a tendency to be located at the edges of fields or
masked units within fields. Of the 120 calibration sites selected for the 10 dates, 48 were edge pixels. In the authors’
experience, images should be carefully masked to remove certain features in the data such as obvious skips in the field
and field edges. For example, the imagery could be filtered based on a given NDVI threshold (e.g., 0.2), removing
soil-dominated pixels. If the imagery is of very high resolution, finer than the row structure of the crop, then variation
is increased because the pixels contain information about individual plants, which may not be representative of larger
areas in a field. Thus, imagery should also be re-sampled to a scale that is representative of the management question or
ground sampling scale. For example, a 10-m pixel size might not be appropriate for a ground sample that represents a
1–2 m area (Atkinson and Curran, 1995). This issue of variation may cause ESAP to choose less representative points

Fig. 5. NDVI from reflectance data vs. crop height for 2002 data plotted to show early and mid-season relationships. Other dates for height and
width showed very similar relationships. The numbers represent day of year (DOY). The slope for pooled flights for all three dates is also shown.
This shows that within each date slopes are linear but vary. The seasonal relationship is linear. The NDVI value of dry bare soil was about 0.1. As can
be seen from the non-linear relationship early in the season, NDVI vs. crop response should not be extrapolated beyond the range of data collected.
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Fig. 6. Distribution of ESAP-selected points within the 2002, DOY 176 data set. The data points (pixels) were assigned sequential ID numbers and
plotted on the X-axis vs. their respective NDVI values. Other dates showed similar distributions of ESAP-selected points across the pixel value data
range.

for the question being addressed but is not unique to this method of choosing sampling locations. The scientific or
management objective must always be matched to the scale of measurement. With these precautions in mind however,
ESAP can choose representative data points for directed sampling.

In principle, predictive maps of the crop attribute of interest that are continuously variable across a field could
be used directly by a producer or consultant or as input to a crop simulation model to extend the model spatially
across a field. For example, canopy height and width are important parameters for estimation of evapotranspiration
(Fitzgerald et al., 2003; Hunsaker et al., 2005). If the resolution of the continuously variable map or database is too fine
for variable-rate management, then discrete management zones could be created based on thresholds or unsupervised
classification (Fig. 4c). Another advantage of this directed sampling approach over classification or zone approaches
(Chang et al., 2003) is that coordinates for site selection are provided. Thus, once a validated relationship is established
between the remotely sensed imagery and crop attribute, application of this method by a crop consultant not trained in
spectral classification would be relatively easy and finding sample locations less subjective than zone-based sampling
techniques. Finally, compared to co-kriging and/or kriging with external drift, significantly fewer sampling locations
are required for model calibration (thus reducing monitoring costs).

When using the directed sampling approach, the input covariate (i.e., remote) data can be an image or other spatial
data set, including yield maps, digital elevation maps, and output from a model or GIS analysis, depending on the need
of the analysis or management. This offers flexibility in terms of the data a farmer or consultant might have available.
For example, plant height is one factor used in determining cotton growth regulator application rates and remotely
sensed estimates of height have proven useful for variable-rate application of this input (Bethel et al., 2003; Lewis et
al., 2003). Plant N status can also be estimated remotely and could be useful for variable nitrogen application maps
(Bausch and Diker, 2001; Bronson et al., 2003; Fitzgerald et al., in press; Rodriguez et al., in press).

It should also be noted that the response surface technique can accommodate multiple inputs. The ESAP-RSSD
software, as currently written, can accommodate two inputs from which sampling designs are generated. For example,
two or more geo-referenced ECa signals are commonly recorded during soil salinity surveys to help improved the
accuracy of depth-specific salinity predictions (Rhoades et al., 1999). This could provide the opportunity to input two
remotely sensed wavebands or indices for estimation of crop attributes, providing the relationship to the attributes of
interest can be expressed as a (multiple) linear regression model.

Finally, systems-level research and management are hampered by a lack of tools to provided scale-bridging or
scale-independent means of collecting and processing data. Although not tested here directly, it is hypothesized that
if the relationship between the primary and covariate variables is of a low-order quadratic then this response surface
sampling design procedure could be used at multiple scales of resolution from row to region. This would provide
expanded opportunities for on farm studies and systems-level analysis using various types of geospatial inputs (Johnson
et al., 2005).
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5. Summary and conclusions

This study tested the ability of the ESAP-RSSD software to direct ground sampling using aerial imagery for purposes
of predicting specific cotton crop attributes; i.e., height and width, from suitably calibrated regression equations.
Although developed for soil salinity estimation, the response surface theory underlying the ESAP-RSSD software
allows for the input of any geospatial remotely sensed data and maximizes the probability of generating a sampling
design that will produce spatially uncorrelated regression model residuals. Relatively few locations are thus required
(to estimate ordinary regression models) and maps of easily acquired crop attributes can be produced within about 36 h.
The imagery for a field is processed within hours after a flight and ground sampling can occur the following morning.
By afternoon, maps or digital databases can be output describing the spatial distribution of width, height or another
easily recordable crop attribute.

The following outline summarizes the steps for using ESAP-RSSD with remotely sensed data to produce maps of
crop attributes:

• Image processing:
(1) Calibrate imagery to reflectance (optional);
(2) Georegister imagery;
(3) Mask undesirable areas based on thresholds or other methods;
(4) Export as text file for input to ESAP-RSSD (requires three columns, X and Y coordinates in UTM and pixel

value);

• ESAP-RSSD:
(5) Remove outliers (if necessary) from imported pixel values using built-in routines and view histograms for data

normality;
(6) Generate sampling design and output to text files;

• GPS and ground data:
(7) Load the final points to differential GPS unit;
(8) Navigate to locations and collect field samples;

• ESAP-calibrate (or statistical software):
(9) Process ground samples and organize data;

(10) Perform regression analyses (prediction) and calculate Moran IMS using ESAP-calibrate or another statistical
package;

• Mapping only:
(11) Input ‘survey’ file from ESAP-RSSD and ground data to ESAP-calibrate to develop prediction map;
(12) Output prediction and variance data to external program (such as ENVI) to produce predictive and, optionally,

standard deviation maps;

• Validation and Calibration:
(13) If validating data (as done in 2001) then perform F-tests (composite, mean prediction, and joint prediction)

using statistical software;
(14) If Moran score and F-tests are not significant then create maps of the crop parameters of interest following

steps 11 and 12.

Despite the use of different spectral wavebands and scatter in the data, all imagery-derived data were found to be
significantly correlated to both crop height and width across multiple dates in three seasons of cotton. Measures that
might be more useful to a producer or consultant, such as nitrogen status or evapotranspiration, could be used if the
data satisfy the regression modeling assumptions. This approach has the advantage of supplying the farm manager with
a small number of unambiguous sample locations that can be sampled quickly and processed for precision farming
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applications. In practice, validation sites will not be needed for every date that data are collected if a reasonably strong
a priori linear (or low-order quadratic) relationship can be shown to exist between the primary and covariate data from
previous experimentation.
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